Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Osteoporos Rep ; 22(1): 44-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243151

RESUMO

PURPOSE OF REVIEW: Musculoskeletal imaging serves a critical role in clinical care and orthopaedic research. Image-based modeling is also gaining traction as a useful tool in understanding skeletal morphology and mechanics. However, there are fewer studies on advanced imaging and modeling in pediatric populations. The purpose of this review is to provide an overview of recent literature on skeletal imaging modalities and modeling techniques with a special emphasis on current and future uses in pediatric research and clinical care. RECENT FINDINGS: While many principles of imaging and 3D modeling are relevant across the lifespan, there are special considerations for pediatric musculoskeletal imaging and fewer studies of 3D skeletal modeling in pediatric populations. Improved understanding of bone morphology and growth during childhood in healthy and pathologic patients may provide new insight into the pathophysiology of pediatric-onset skeletal diseases and the biomechanics of bone development. Clinical translation of 3D modeling tools developed in orthopaedic research is limited by the requirement for manual image segmentation and the resources needed for segmentation, modeling, and analysis. This paper highlights the current and future uses of common musculoskeletal imaging modalities and 3D modeling techniques in pediatric orthopaedic clinical care and research.


Assuntos
Doenças Musculoesqueléticas , Ortopedia , Humanos , Criança , Osso e Ossos/diagnóstico por imagem , Fenômenos Biomecânicos , Imageamento Tridimensional
2.
Sci Rep ; 13(1): 6473, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081030

RESUMO

Tarsometatarsal joint arthrodesis is used to treat a variety of injuries and deformities in the midfoot. However, the surgical technique has not been optimized, in part due to limited knowledge of morphologic features and variation in the related joints. Previous research has relied primarily on dissection-based anatomical analysis, but quantitative imaging may allow for a more sophisticated description of this complex. Here, we used quantitative micro-CT imaging to examine dimensions, distance maps, and curvature of the four articular surfaces in the first and second tarsometatarsal joints. Image segmentation, articular surface identification, and anatomic coordinate systems were all done with semi or fully automatic methods, and distance and size measurements were all taken utilizing these anatomic planes. Surface curvature was studied using Gaussian curvature and a newly defined measure of curvature similarity on the whole joint and on four subregions of each surface. These data show larger articular surfaces on the cuneiforms, rather than metatarsals, and define the generally tall and narrow articular surfaces seen in these joints. Curvature analysis shows minimally curved opposing convex surfaces. Our results are valuable for furthering knowledge of surgical anatomy in this poorly understood region of the foot.


Assuntos
Articulações do Pé , Ossos do Metatarso , Articulações do Pé/diagnóstico por imagem , Articulações do Pé/cirurgia , Articulações do Pé/anatomia & histologia , Ossos do Metatarso/diagnóstico por imagem , Ossos do Metatarso/cirurgia , Articulações , Metatarso
3.
J Orthop Res ; 40(6): 1457-1469, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34406675

RESUMO

Injuries to the Lisfranc complex may require surgical fixation, the stability of which may be correlated with bone mineral density (BMD). However, there is limited research on regional BMD variations in the Lisfranc complex. This study used quantitative micro-CT to characterize regional BMD in the four bones (medial cuneiform, intermediate cuneiform, first metatarsal, and second metatarsal) of this complex. Twenty-four cadaveric specimens were imaged with a calibration phantom using micro-CT. Each bone was segmented and divided into eight regions based on an anatomical coordinate system. BMD for each octant was calculated using scan-specific calibration equations and average image intensity. Differences between regions were analyzed using ANOVA with post hoc analysis and differences between groups of four octants in each plane were analyzed with t-tests with significance level α = 0.05. The highest density region in the medial cuneiform was the distal-dorsal-lateral and dorsal regions showed significantly higher BMD than plantar regions. The intermediate cuneiform had the highest density in the distal-dorsal-medial region and the dorsal and medial regions had higher BMD than the plantar and lateral regions, respectively. The densest region of the first metatarsal was the distal-dorsal-lateral and distal regions had significantly higher BMD than proximal regions. In the second metatarsal, the distal-dorsal-medial region had the highest density, and the distal, dorsal, and medial regions had significantly higher BMD than the proximal, plantar, and lateral regions, respectively. The predominant finding was a pattern of increased density in the dorsal bone regions, which may be relevant in the surgical management of Lisfranc injuries.


Assuntos
Densidade Óssea , Ossos do Metatarso , Cadáver , Humanos , Ossos do Metatarso/lesões , Cintilografia , Microtomografia por Raio-X
4.
Int J Comput Assist Radiol Surg ; 16(3): 387-396, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33606178

RESUMO

PURPOSE: In the field of skeletal research, accurate and reliable segmentation methods are necessary for quantitative micro-CT analysis to assess bone quality. We propose a method of semi-automatic image segmentation of the midfoot, using the cuneiform bones as a model, based on thresholds set by phantom calibration that allows reproducible results in low cortical thickness bones. METHODS: Manual and semi-automatic segmentation methods were compared in micro-CT scans of the medial and intermediate cuneiforms of 24 cadaveric specimens. The manual method used intensity thresholds, hole filling, and manual cleanup. The semi-automatic method utilized calibrated bone and soft tissue thresholds Boolean subtraction to cleanly identify edges before hole filling. Intra- and inter-rater reliability was tested for the semi-automatic method in all specimens. Mask volume and average bone mineral density (BMD) were measured for all masks, and the three-dimensional models were compared to the initial semi-automatic segmentation using an unsigned distance part comparison analysis. Segmentation methods were compared with paired t-tests with significance level 0.05, and reliability was analyzed by calculating intra-class correlation coefficients. RESULTS: There were statistically significant differences in mask volume and BMD between the manual and semi-automatic segmentation methods in both bones. The intra- and inter-reliability was excellent for mask volume and bone density in both bones. Part comparisons showed a higher maximum distance between surfaces for the manual segmentation than the repeat semi-automatic segmentations. CONCLUSION: We developed a semi-automatic micro-CT segmentation method based on calibrated thresholds. This method was designed specifically for use in bones with high rates of curvature and low cortical bone density, such as the cuneiforms, where traditional threshold-based segmentation is more challenging. Our method shows improvement over manual segmentation and was highly reliable, making it appropriate for use in quantitative micro-CT analysis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Microtomografia por Raio-X/métodos , Adulto , Densidade Óssea , Cadáver , Calibragem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
5.
Foot Ankle Orthop ; 6(2): 24730114211015203, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35097452

RESUMO

BACKGROUND: Nonunion following hindfoot arthrodesis may be caused by failure to maintain compression at the arthrodesis site. The ability of lag screws, commonly used in arthrodesis, to maintain compression in hindfoot bones has not been well characterized. The aim of this work was to quantify the stress relaxation response of hindfoot bone with initial and repeated compression with a lag screw. METHODS: Ten sets of 25-mm-diameter bone cylinders were cut from the talus and calcaneus in fresh-thawed cadaveric feet. A load cell was compressed between cylinders with an 8.0-mm partially threaded cannulated lag screw simulating arthrodesis. For 7 sets, screws were tightened by 3 quarter-turns, rested for 3 minutes, retightened 1 quarter-turn, and rested for 30 minutes. Three sets served as controls in which screws were not retightened. RESULTS: Maximum compression after initial screw tightening and retightening averaged 275 and 337 N (P = .07), respectively. Compression 3 minutes after initial screw tightening and retightening averaged 199 and 278 N (P = .027), respectively. The compression recorded 3 minutes after screw retightening was an average of 40% higher than that recorded 3 minutes after initial tightening. The average compression 30 minutes after screw retightening was 255 N, a compression loss of 25% from the average maximum compression after retightening. Eighty percent of this compression loss happened in an average of 5.5 minutes. CONCLUSION: Hindfoot bones exhibit compression loss over time during simulated arthrodesis. Compression maintenance in bone is improved with screw retightening. Further work is needed to understand the mechanism of action and determine optimum time for recompression. CLINICAL RELEVANCE: Retightening lag screws before wound closure may improve compression at the arthrodesis site and thereby decrease the chance of nonunion. LEVEL OF EVIDENCE: N/A, laboratory experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...